UAV Assisted Energy Delivery

Team: sdmay19-43

Website: http://sdmay19-43.sd.ece.iastate.edu/

Advisors and Clients: Drs. Randall Geiger & Degang Chen

Problem Statement

- Many Devices, Few Connections
- Difficulty to add new systems to existing ones
- Flexibly Energy Delivery Through Drones

2

Functional and Non-Functional Requirements

- Functional
 - Take off and fly to and from a specified location autonomously
 - Dock with landing station for power transfer autonomously
 - Deliver power to and from payload battery to landing station
- Non-Functional
 - Security
 - Scaling system to miles
 - Multiple drones, bases, nodes

System Design

- Automated Flying
 - Using existing drone (Intel Ready-to-Fly)
 - Receive coordinates to landing station
 - Flys autonomously at an efficient speed at variable distances

System Design

- Automated Landing Procedure
 - Unique landing station
 - Controlled descent to prevent crashing
 - Fine movement to land

System Design

- Energy Transfer
 - Use separate payload battery to transfer energy
 - Carriage design for payload battery transport
 - Attach and detach without human assistance

Project Management

- Group Members focus:
 - Alexandra & Garth
 - Drone Troubleshoot & Fly to location
 - Brendan & Kevin
 - Landing Station design & Power transfer method
 - Connor & Kaitlyn
 - Precision movement & Image detection

Operating Environment

- Overall system will deal with:
 - Adverse weather conditions
 - Objects to avoid
 - Regulatory areas
- Our scope will deal with:
 - Clear day
 - Open field
 - Outside of regulatory areas (FAA restrictions)

Constraints

- Battery Capacity (Drone power source)
- Testing Safety
- Drone Carrying Capacity

Detailed System Design

- Autonomous flying
 - GPS or Cardinal coordinates
 - Use DroneKit for high level design
 - Use Intel Drone due to open source

- Automated landing
 - Image processing (Color & QR detection)
 - Small precise movements
- Power transfer
 - Magnetic cord will be easy to attach and detach
 - 3D printing custom carriage design allows lightweight solution

UAV Assisted Energy Delivery: sdmay19-43

Implementation

- Hardware
 - Intel Ready-to-fly drone
 - Lithium polymer battery
 - Payload Battery (Lithium Ion)
 - Landing Station
- Software
 - DroneKit
 - OpenCV & Pyboof

Standards

- 1028-2008 Software Audits
- 1625-2008 Multicell Batteries
- 16085-2006 Risk Management
- 14764-2004 Software Lifecycle Process and Maintenance

Testing Plan

- Unit testing
 - Fly to location
 - Landing
 - Energy Transfer
- Integration
 - Put all components together

Image Detection Video

• Image Detection

Conclusion

- End Product
 - Components completed
 - Landing station, reliable energy transfer, color detection, precision control, QR code detection, fly to GPS & cardinal coordinates
 - Integration unsuccessful

Acknowledgements

- Dr. Geiger and Dr. Chen
- Dr. Zambreno
- Jeffery Richardson
- Jacques Arnoult

UAV Assisted Energy Delivery: sdmay19-43

Sources

• Intel drone

https://docs.px4.io/en/flight_controller/intel_aero.html

• UPS guy

https://teamster.org/news/2018/07/teamsters-release-ups-nationalagreement-principle-highlights UAV Assisted Energy Delivery: sdmay19-43

